Structure and Overlaps of Communities in Networks

نویسندگان

  • Jaewon Yang
  • Jure Leskovec
چکیده

One of the main organizing principles in real-world social, information and technological networks is that of network communities, where sets of nodes organize into densely linked clusters. Even though detection of such communities is of great interest, understanding the structure communities in large networks remains relatively limited. Due to unavailability of labeled ground-truth data it is practically impossible to evaluate and compare different models and notions of communities on a large scale. In this paper we identify 6 large social, collaboration, and information networks where nodes explicitly state their community memberships. We define ground-truth communities by using these explicit memberships. We then empirically study how such groundtruth communities emerge in networks and how they overlap. We observe some surprising phenomena. First, ground-truth communities contain high-degree hub nodes that reside in community overlaps and link to most of the members of the community. Second, the overlaps of communities are more densely connected than the nonoverlapping parts of communities, in contrast to the conventional wisdom that community overlaps are more sparsely connected than the communities themselves. Existing models of network communities do not capture dense community overlaps. We present the Community-Affiliation Graph Model (AGM), a conceptual model of network community structure, which reliably captures the overall structure of networks as well as the overlapping nature of network communities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzziness and Overlapping Communities in Large-Scale Networks

Overlapping community detection is a popular topic in complex networks. As compared to disjoint community structure, overlapping community structure is more suitable to describe networks at a macroscopic level. Overlaps shared by communities play an important role in combining different communities. In this paper, two methods are proposed to detect overlapping community structure. One is called...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...

متن کامل

Overlapping Community Detection in Social Networks Based on Stochastic Simulation

Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...

متن کامل

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1205.6228  شماره 

صفحات  -

تاریخ انتشار 2012